organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Canan Kazak,^a* Muhittin Aygün,^b Canan Kuş,^c Süheyla Özbey^d and Orhan Büyükgüngör^a

^aDepartment of Physics, Ondokuz Mayís
University, TR-55139, Samsun, Turkey,
^bDepartment of Physics, Dokuz Eylül University,
Buca,TR-35150, Izmir, Turkey, ^cDepartment of
Pharmaceutical Chemistry, Ankara University,
06100-Tandogan, Ankara, Turkey, and
^dDepartment of Physics Engineering, Hacettepe
University, Beytepe 06532, Ankara, Turkey

Correspondence e-mail: ckazak@samsun.omu.edu.tr

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(C-C) = 0.003 \text{ Å}$ R factor = 0.052 wR factor = 0.158 Data-to-parameter ratio = 15.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. 5-Methyl-2-(4-methylbenzoyloxy)acetophenone

Molecules of the title compound, $C_{17}H_{16}O_3$, are linked *via* intermolecular C-H···O hydrogen bonds into infinite chains, made up of centrosymmetric bimolecular aggregates stretching along the *a* axis of the crystal. The 4-methylbenzene group and the carbonyl moiety are almost coplanar, and the dihedral angle between the planes of 2-(4-methylbenzoyloxy) and 5-methylacetophenone is 78.81 (5)°.

Comment

Acetophenone derivatives are used for the synthesis of a number of compounds containing heterocyles, such as benzofuran and benzopyran. Flavone, which has a benzopyran moiety, is an important heterocyclic system, which is present in many naturally occurring products (Mabry *et al.*, 1970) and can also be obtained synthetically. The compounds involving this heterocyclic system exhibit biological activities of various kinds, such as antiviral (Meyer *et al.*, 1991), spasmolytic (Nardi *et al.*, 1993) and antihypertensive (Wu *et al.*, 1989). 5-Methyl-2- (4-methylbenzoyloxy)acetophenone, (I), is a starting material used for the synthesis of 2-(4-methylphenyl)-6-methyl-4*H*-1-benzopyran-4-one (4',6-dimethylflavone) (Wurm & Nordmann, 1988).

An ORTEPIII (Burnett & Johnson, 1996) plot of (I) is shown in Fig. 1. The C10 \longrightarrow O3 and C10-O1 bond lengths are 1.202 (2) and 1.361 (2) Å, respectively, these bonds being slightly longer than the corresponding bonds in 1-(4-chlorobenzoyloxy)-2-methoxy-4-(2-propenyl)benzene [1.184 (3) and 1.348 (3) Å, respectively; Aygün *et al.*, 1997]. The C8 \implies O2 bond length of 1.204 (2) Å is similar to the corresponding bond length in phenyl 2-pyridyl ketone [1.213 (2) Å; Sievert *et al.*, 1998]. Other relevant bond lengths and angles are listed in Table 1.

The 5-methylacetophenone group is planar and the maximum deviations of the C7 and O1 atoms from its least-squares plane are 0.033 (2) and 0.173 (2) Å, respectively. The 4-methylbenzene group and the carbonyl moiety are almost

 \odot 2002 International Union of Crystallography Printed in Great Britain – all rights reserved

Received 11 January 2002 Accepted 26 April 2002

Online 11 May 2002

Figure 1

An *ORTEP*III drawing (Burnett & Johnson, 1996) of the title compound, showing the atomic numbering scheme. Displacement ellipsoids of non-H atoms are shown at the 50% probability level.

coplanar; the dihedral angle between their planes is $8.68 (7)^{\circ}$. The dihedral angle formed by the planes of the 2-(4-methylbenzoyloxy) and 5-methylacetophenone groups is $78.81 (5)^{\circ}$.

The crystal structure is stabilized by intermolecular C– H···O hydrogen bonds. The C3–H3···O3ⁱ [symmetry code: (i) -x, -y, -z] hydrogen bond is responsible for formation of centrosymmetric bimolecular aggregates, and the C4– H4···O2ⁱⁱ [symmetry code: (ii) x-1, y, z] hydrogen bond links these aggregates into infinite chains stretching along the *a* axis of the crystal. The geometric parameters of the hydrogen bonds are given in Table 2.

Experimental

p-Tolylchloride (5.845 g, 0.0378 mol, 5 ml) was added to a solution of 2-hydroxy-5-methylacetophenone (Aktiebolag, 1965) (5.67 g, 0.0378 mol) in pyridine (8 ml) and heated for 0.5 h at 353 K. The mixture was poured into water, acidified with HCl and extracted with CHCl₃. The CHCl₃ layer was washed with water, dried over MgSO₄ and evaporated. Crystallization of the residue from EtOH gave 7.5 g of the title compound.

Crystal data

5	
$C_{17}H_{16}O_3$	Z = 2
$M_r = 268.30$	$D_x = 1.24 \text{ Mg m}^{-3}$
Triclinic, P1	Cu $K\alpha$ radiation
a = 7.5424 (6) Å	Cell parameters from 25
b = 9.5834 (8) Å	reflections
$c = 10.7427 \ (8) \ \text{\AA}$	$\theta = 21.5 - 42.7^{\circ}$
$\alpha = 69.671 \ (7)^{\circ}$	$\mu = 0.68 \text{ mm}^{-1}$
$\beta = 80.402 \ (9)^{\circ}$	T = 293 (2) K
$\gamma = 87.077 \ (8)^{\circ}$	Prismatic, colorless
$V = 717.9(1) \text{ Å}^3$	$0.36 \times 0.21 \times 0.15 \text{ mm}$
Data collection	
Enraf–Nonius CAD-4	2228 reflections with $I > 2\sigma(I)$
diffractometer	$\theta_{\rm max} = 74.2^{\circ}$
$\omega/2\theta$ scans	$h = 0 \rightarrow 9$
Absorption correction: ψ scan	$k = -11 \rightarrow 11$
(North et al., 1968)	$l = -12 \rightarrow 13$
$T_{\min} = 0.752, \ T_{\max} = 0.905$	3 standard reflections
2926 measured reflections	frequency: 120 min
2926 independent reflections	intensity decay: 2%

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0848P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.052$	+ 0.0632P]
$wR(F^2) = 0.158$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.09	$(\Delta/\sigma)_{\rm max} = 0.005$
2926 reflections	$\Delta \rho_{\rm max} = 0.22 \ {\rm e} \ {\rm \AA}^{-3}$
185 parameters	$\Delta \rho_{\rm min} = -0.22 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	Extinction correction: SHELXL97
	Extinction coefficient: 0.0061 (15)

Table 1

Selected geometric parameters (Å, °).

O1-C10	1.360 (2)	C1-C8	1.502 (2)
O1-C2	1.406 (2)	C8-C9	1.489 (3)
O2-C8	1.204 (2)	C10-C11	1.474 (2)
O3-C10	1.202 (2)	C14-C17	1.507 (2)
C7-C5	1.508 (2)		
C6-C5-C7	121.5 (2)	O2-C8-C1	119.1 (2)
C3-C2-O1	117.6 (1)	O3-C10-O1	122.2 (1)
C1-C2-O1	120.4 (1)	O3-C10-C11	125.6 (1)
C2-C1-C6	116.6 (2)	O1-C10-C11	112.1 (1)
C2-C1-C8	126.2 (2)	C16-C11-C10	123.0 (1)
O2-C8-C9	118.6 (2)	C13-C14-C17	121.2 (2)

Table 2Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C4-H4···O3 ⁱ	0.93	2.54	3.442 (3)	163
$C3 - H3 \cdots O2^{ii}$	0.93	2.55	3.404 (2)	153
	(**)	4		

Symmetry codes: (i) -x, -y, -z; (ii) x - 1, y, z.

H atoms were placed in positions calculated on stereochemical grounds and included in the refinement in the riding-motion approximation. Their $U_{\rm iso}$ values were constrained to be 1.2 times $U_{\rm eq}$ of the carrier atom (1.5 $U_{\rm eq}$ in the case of the methyl H atoms).

Data collection: *CAD-4 EXPRESS* (Enraf–Nonius, 1993); cell refinement: *CAD-4 EXPRESS*; data reduction: *MolEN* (Fair, 1990); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEP*III (Burnett & Johnson, 1996); software used to prepare material for publication: *SHELXL*97.

The authors acknowledge the use of the CAD-4 diffractometer (purchased under grant DPT/TBAG1 of the Scientific and Technical Research Council of Turkey) of the Physics Engineering Department, Hacettepe University, Turkey.

References

- Aktiebolag, H. (1965). Apotekare Paul Nordstroms Fabriker. Synthesis of benzofuran derivatives. Neth. Patent 6 413 996; Chem. Abstr. (1965). 63, 18043.
- Aygün, M., Işík, Ş., Şaşmaz, S., Tahir, M. N., Erdönmez, A. & Büyükgüngör, O. (1997). Acta Cryst. C53, 897–899.
- Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
- Enraf-Nonius (1993). CAD-4 EXPRESS. Version 1.1. Enraf-Nonius, Delft, The Netherlands.
- Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.
- Mabry, T. J., Markham, K. R. & Thomas, M. B. (1970). *The Systematic Identification of Flavanoids*. Berlin: Springer Verlag.
- Meyer, N. D., Haemers, A., Mishra, L., Pandey, H. K., Pieters, L. A. C., Berghe, D. A. V. & Vlietinck, A. J. (1991). J. Med. Chem. 34, 736–746.

- Nardi, D., Leonardi, A., Pennini, R., Tajana, A., Cazzulani, P. & Testa, R. (1993). Arzneim-Forsch./Drug Res. 43, 28–34.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 354.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

Sievert, M., Dienelt, R. & Bock, H. (1998). Acta Cryst. C54, 674-676.

- Wu, E. S. C., Cole, T. E., Davidson, T. A., Dailey, M. A., Doring, K. G., Fedorchuk, Loch, J. T., Thomas, T. L., Biosser, J. C., Borrelli, A. R., Kinsolving, C. R., Parker, R. B., Strand, J. C. & Watkins, B. E. (1989). J. Med. Chem. 32, 183–192.
- Wurm, G. & Nordmann, M. (1988). Arch. Pharm. (Weinheim), 321, 555-558.